Photocatalytic degradation of methylene blue from aqueous solution using Fe3O4@SiO2@CeO2 core-shell magnetic nanostructure as an effective catalyst
نویسندگان
چکیده مقاله:
In the present study, the core-shell magnetic nanostructure of Fe3O4@SiO2@CeO2 was synthesized to investigate its use as an effective photocatalyst for methylene blue removal. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The photocatalytic activity for the Fe3O4@SiO2@CeO2 core-shell magnetic nanostructure was investigated under visible light by determining the degradation rate of methylene blue for 50 min. At the end of the photocatalytic degradation process, the magnetic catalyst was recovered by an external magnetic field. The performance of the proposed catalyst for the degradation of methylene blue was improved with the optimization of the effective parameters such as the amount of catalyst, pH, and reaction time. Under optimum conditions, the efficiency of methylene blue removal with the proposed photocatalyst remains higher than 92 % after five times of use. The second pseudo-model was selected as the kinetic model to calculate catalytic degradation. The present results show that the Fe3O4@SiO2@CeO2 can be an efficient nanocatalyst for the photodegradation of dye pollutants.
منابع مشابه
Efficient Fenton like degradation of Methylene blue in aqueous solution by using Fe3O4 nanoparticles as catalyst
Fe3O4 nanoparticles were prepared hydrothermally and characterized by X-Ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). It was found that these nanoparticles can act as an efficient catalyst in the degradation of Methylene blue dye in aqueous solution in a Fenton like system in presence of 30% perhydrol. Uv-Vis spectroscopy was used to determine the concentration of ...
متن کاملProperties of sol-gel synthesized multiphase TiO2 (AB)-ZnO (ZW) semiconductor nanostructure: An effective catalyst for methylene blue dye degradation
The present study, describes the structural, electrical, and the photocatalytic activity of sol-gel synthesized TiO2- ZnO nanostructure. The synthesized mixed oxide nanostructure is characterized by XRD, FTIR, Raman, UV-Vis, FESEM, DLS and Impedance Spectroscopy analyses. In addition, photocatalytic activity of multiphase TiO2 (TAB)-ZnO (ZW) nanostructure is analysed using...
متن کاملRemoval of methylene blue dye aqueous solution using photocatalysis
The nano sized TiO2 and ZnO are the most active photocatalysts. Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...
متن کاملRemoval of methylene blue dye aqueous solution using photocatalysis
The nano sized TiO2 and ZnO are the most active photocatalysts. Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...
متن کاملMagnetic Multi-Walled Carbon Nanotube as an Adsorbent for Toluidine Blue O Removal from Aqueous Solution
Toluidine Blue O (TBO) is a cationic dye which is extensively used in the industries. In the present paper a simple and efficient wet chemical method was introduced for removal of TBO from waste aqueous solution. Magnetic multi-walled carbon nanotubes were synthesized using commercially available multi-wall carbon nanotubes and magnetic iron oxide nanoparticles which were examined for removal o...
متن کاملDecolorization of Methylene Blue from Aqueous Solution Using Ultrasonic / Fenton Like Process (RESEARCH NOTE)
Docolorization of Methylene Blue was investigating using a Ultrasonic/Fenton like reactor in batch mode. The effects of pH, reaction time, initial concentration of dye, H2O2 and Fe on the dye removal was studied. It was found that the increase of initial dye and H2O2 concentration and the increase of initial pH, are not beneficial for improving the dye removal efficiency. Increasing the dye con...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2
صفحات -
تاریخ انتشار 2019-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023